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Finite element solution of the Orr–Sommerfeld equation using
high precision Hermite elements: plane Poiseuille �ow
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SUMMARY

This paper presents a comprehensive review of the numerical techniques used during the past half
century and their accuracy in hydrodynamic stability analysis of plane parallel �ows. The paper also
describes a �nite element solution of the Orr–Sommerfeld equation using high precision Hermite el-
ements. A stability analysis technique is performed by imposing an in�nitesimal perturbation to the
laminar base �ow to determine the thresholds of neutral instabilities or the growth rate of the perturba-
tion for any Reynolds and wave numbers. Validation of the present numerical technique is performed
for plane Poiseuille �ow. The numerical results, obtained with uniform and nonuniform meshes, show
excellent agreement with the most accurate results available in the literature. Copyright ? 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

A true understanding of transition �ows has eluded aerodynamicists for decades. Since tur-
bulence and chaos pervade across all �ow regimes, the character of transition-evoking insta-
bilities must be understood in all types of �ows including subsonic, transonic, supersonic,
and hypersonic. The fundamental nature of instabilities is similar in most �ows. Therefore,
aerodynamicists have concentrated on classic low Reynolds number �ows at low speeds which
can be analyzed with a certain degree of con�dence using controlled experiments. Once a sat-
isfactory theoretical model that describes the onset of instabilities in the laminar �ow regime
of low Reynolds number subsonic �ows has evolved and been validated, one may envisage
its extension to other �ow regimes.
Accurate prediction of the onset of instabilities in laminar �ows by solving the Orr–

Sommerfeld equation using discrete numerical methods has been a true challenge. Despite
the available computer resources, with increased speed and memory storage space, discrete
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numerical techniques such as the �nite di�erence and �nite element methods, which use a
limited number of grid points or �nite elements, have not been able to predict the critical
Reynolds number and the wave number with a high degree of accuracy. An accurate discrete
solution to the Orr–Sommerfeld equation requires e�cient discretization tools. The critical
Reynolds number for the onset of instability is relatively high for many classical laminar
�ows; hence, the shear �ows e�ects are con�ned to a thin layer near the �ow boundaries,
and are characterized by steep gradients of the �ow properties, in the close vicinity of the
boundaries. In the bulk region of the �ow where the viscous e�ects and vorticity production
are weak, the �ow property gradients are usually relatively small. Therefore, clustering and
stretching over these regions are natural ways to obtain a solution with fewer grid points
and su�cient accuracy. The accuracy itself is dependent upon the numerical technique em-
ployed. For the same number of grid points=elements and distribution, for example, a �nite
element method can perform much better than a �nite di�erence method even with high order
schemes.
A numerical solution of the Orr–Sommerfeld equation leads to a set of eigenvalues for

the perturbation growth rate called spectrum-containing a �nite number of di�erent modes.
The number and the precision of the modes will depend eventually on the grid size of the
numerical domain. In other words, the number of modes will be equal to the degrees of
freedom within the numerical domain. Finding the most instable (or least stable) mode is
straightforward using a local iterative procedure with a very good guess for the initial values.
This technique is less cost e�ective; however, there is a great risk of missing the least stable
mode or the most dangerous mode. To avoid this risk, it is more convenient to use a global
iterative procedure that will determine all the spectra (possible decaying and growing modes)
and identify the most instable (or the least stable) modes. A global technique, which is
adopted in the present study, is more costly than a local technique but it is completely
reliable.
For an undisturbed plane Poiseuille �ow, the basic solution is given in dimensionless

form as

Ub=1− y2 (1)

The half width, h′, between the two parallel planes and the velocity at the mid-width of the
channel, U0, are used for scaling such that the �ow domain is given by �= {y∈ [−1; 1]} and
the Reynolds number is given by Re=U0h′=�, where � is the kinematic viscosity of the �uid.
Following the notation of Orszag [1], a two-dimensional disturbance is described by

V (t; x; y)= v(y)ei�(x−�t) (2)

where V is the y-perturbation-velocity component, �=− i�� is the growth rate of the pertur-
bation, and � is the wave number in the �ow direction.
The Orr–Sommerfeld equation is obtained as follows:

@4v
@y4

− 2�2 @2v
@y2

+ �4v− i� Re
[
(Ub − �)

(
@2v
@y2

− �2v
)
− @2Ub

@y2
v
]
=0 (3)

and the boundary conditions are

y= ± 1; v=
@v
@y
=0 (4)
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Table I. Critical parameters at the onset of instabilities for plane Poiseuille �ow. The superscripts h′
and h′=2 refer to computations within full and half channel �ow con�gurations.

References Rec � �r

Thomas [11] 5780 1.026 —
Grosch and Salwen [4] 5750 1.025 —
Orszag [8] 5772.22 1.02056 0.26400174
Saraph et al. [9] 5882h

′
, 5848h

′=2 — —
Kirchner [5] 5775.99 1.026 —

Table II. Perturbation growth rate for Re=104 and �=1 for plane Poiseuille �ow.

References �r � i

Thomas [11] 0.2375259 0.0037404
Grosch and Salwen [4] 0.237413 0.003681
Orszag [8] 0.23752649 0.00373967
Dongarra et al. [1] 0.23752708 0.00373980
Kirchner [5] 0.23752648882047 0.003739670622979582

During the last half century, many researchers have presented di�erent numerical techniques
for solving the Orr–Sommerfeld equation for plane Poiseuille �ow. The most used numerical
techniques are �nite di�erence, spectral, and �nite element methods. Most of the previous
work has considered the special case of Re=104 and �=1, and the case of the onset of
neutral instability. Some previous results are listed in Tables I and II for comparison.
A literature review demonstrates that the number of studies concerning this particular prob-

lem is vast. Therefore, only those most relevant have been referenced in this paper. Starting
with the early work of Thomas [2], the Orr–Sommerfeld equation was solved using fourth-
order �nite di�erence scheme with a uniform mesh. The number of grid points was varied
between 50 and 100. The results were obtained by extrapolating to a zero grid spacing. The
author also presented results in terms of the perturbation growth rate for di�erent values of
Re and �.
Grosch and Salwen [3, 4] solved the Orr–Sommerfeld equation in terms of a stream func-

tion formulation. The perturbation stream function was expanded in a truncated series of
functions that satis�ed the boundary conditions. A Galerkin method was employed to solve
the Orr–Sommerfeld equation, and the QR algorithm was used to solve the resulting eigen-
value problem for a given Re and �. Results in terms of the growth rate were presented for
di�erent values of Re and �.
A more accurate solution of the Orr–Sommerfeld equation for plane Poiseuille �ow was

obtained by Orszag [1]. Reducing the perturbed Navier–Stokes equations, the author used
a pseudo-spectral method by expanding the �ow variable into Chebyshev polynomials. The
resulting eigenvalue problem was solved using the QR matrix eigenvalue algorithm. The most
accurate results were obtained using up to 50 Chebyshev polynomials and di�erent round-o�
errors, as displayed in Tables I and II.
Saraph et al. [5] used a �nite element method to solve the Orr–Sommerfeld equation.

The authors applied the Galerkin technique with linear weighting functions for the continuity
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equation and quadratic weighting functions for the momentum equation. The results were
presented for full and half channel �ow in terms of the critical Reynolds number for the
onset of instability. Due to the low number of �nite elements used in both con�gurations
(four elements) the results were not accurate as those of Orszag [1] (see Table I).
Mele et al. [12] solved the Orr–Sommerfeld equation by a �nite element method, using

Hermite cubic elements with non-uniform mesh. The results were obtained for � = 1 and
Re = 104 (see Table II). The eigenvalues are obtained by solving the resulting matrix system
by the QR algorithm. The number of elements was varied from 15 to 43. A good accuracy
was obtained with 43 elements on a half channel when accounting for symmetry. Fortin
et al. [6] developed a practical and accurate numerical method, based on a �nite element
method, to solve the Orr–Sommerfeld equation for Poiseuille �ow. They also determined the
threshold for �nite amplitude instabilities (known as subcritical �ow). The algorithm of their
numerical technique is described in detail in Reference [6]. The Q2-P1 element (quadratic
for velocity component and linear for pressure) is used. Their results were obtained in terms
of the growth rate at the threshold of instability that was determined previously by Orszag
[1]. On a re�ned mesh, the value of the growth rate agreed to six digits with Orszag’s
results.
Dongarra et al. [7] used Chebyshev tau-QZ algorithm methods to compute the spectra of

classical laminar �ows. In their methods, the authors used Chebyshev representations of the
fourth derivative operator (D4 method). For plane Poiseuille �ow with Re=104 and �=1, the
authors claimed to have obtained the best results using the D4 method with 50 polynomials.
They claimed these results were at least as good as or better than the results reported by
Orszag [1]. They also reported that the method diverged when the number of polynomials
was increased above 50.
Recently, Kirchner [8] introduced a spectral Galerkin �nite element method (p-FEM

method) to solve the Orr–Sommerfeld equation. The eigenfunction was developed into a
truncated series of shape functions consisting of the Legendre polynomials. The numerical
domain mesh contained only one �nite element; the accuracy improvement was obtained by
increasing the polynomial degree instead of improving the mesh re�nement. A polynomial
degree of 100–500 was used and the results agreed well with those reported by Orszag [1].
However, the results at the onset of instability were not as accurate as Orszag’s results. Their
analysis indicated that the p-FEM method used was similar to a spectral method, since the
boundary conditions were applied to the shape functions rather than to the shape function
coe�cients, which is the usual implementation in a �nite element method.
The previous studies have proved the capabilities of the Galerkin and spectral methods in

obtaining accurate results when solving the Orr–Sommerfeld equation. However, for discrete
techniques such as �nite di�erence and �nite element methods, the results are not as accurate
as those obtained using the methods discussed above. This is probably due to inappropriate
choices of the grid distribution strategy and to the discretization schemes. High order schemes
or high precision �nite elements are required due to the steep �ow properties’s gradients
near the boundaries. Also, appropriate clustering and stretching of the grid points within the
numerical domain may help obtain results with a high degree of accuracy.
In the present paper, a �nite element method with high precision elements is used to solve

the Orr–Sommerfeld equation. The �nite element procedure is described in Section 2. The
results and a discussion are presented in Section 3, and some concluding remarks are given
in Section 4.
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Figure 1. Quintic hermite element: (a) �nite element; (b) master element.

2. NUMERICAL FORMULATION

The Orr–Sommerfeld equation is solved using the Bubnov–Galerkin technique. High precision
Hermite elements are used to discretize the Galerkin integral form of the Orr–Sommerfeld
equation.

2.1. Variational formulation

The Galerkin or the variational formulation is a weighted residual technique that uses for a
weighting function any test function � that satis�es �∈H 2

0 (�), with H 2
0 (�)= {�∈H 2(�)=

�= @�=@y=0 on �}, and H 2(�) is the Sobolev space of square integrable functions including
their �rst and second derivatives, and �= @� is the domain boundary. Multiplying the Orr–
Sommerfeld equation by �, and making use of the Green theorem, and then integrating over
the physical domain � leads to the following formulation:

∫
�
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�
]y=1

y=−1
(5)

Since �∈H 2
0 (�), the boundary integral, known as the natural boundary conditions, vanish.

Equations (5) were discretized using the �nite element method. The Hermite element was
used to satisfy the essential and the natural boundary conditions (4) (see Figure 1). The
Hermite elements are usually used to guarantee a C1 continuity across the element faces. In
other words, this type of element provides inter-element continuity of the �ow �eld variables
at the nodal points. For high order partial di�erential equations, it is recommended to use such
type of elements which allows the satisfaction of all the boundary conditions. At each node of
the element, the functional representation for any �ow �eld variable must include more degrees
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of freedom than the nodal value. The additional degrees of freedom are usually represented
by the �rst, second, etc., derivatives of the variables, which are regarded as unknowns. In the
presented study a cubic and quintic Hermite element is used to solve the Orr–Sommerfeld
equation. For a cubic element the number of degrees of freedom is two; the �ow �eld variable
its self (v) and its �rst derivative (dv=dy). For a quintic element, there is an additional degree
of freedom which is represented by the second derivative of the �ow �eld variable (d2v=dy2),
see Figure 1. Thus, in each element, the velocity component pro�le is given by

v(y)=
2∑

j=1

[
vjHj(�) +

@vj
@y

Hj+2(�)
]

for cubic element

v(y)=
2∑

j=1

[
vjHj(�) +

@vj
@y

Hj+2(�) +
@2vj
@y2

Hj+4(�)
]

for quintic element
(6)

where H are the Hermite interpolation functions. The parameter � refers to the master element
co-ordinate such that y= ��ye=2. The variable v is a complex function and H is a real
function. Therefore, the coe�cients (nodal values) vj, @vj=@� and @2vj=@�2 are the unknown
complex numbers.
The Hermite shape functions are de�ned as follows:

v :Hi(�)= (�+ �i)2(��i − 2) 14
@v
@�
:Hi+2(�)= − �i(�+ �i)2(��i − 1)J4

; i=1; 2 for cubic element

v :Hi(�)= (1 + �i�)3(8− 9�i�+ 3�2) 116

@v
@�
:Hi+2(�)= (1 + �i�)3(−�i + �)(5− 3�i�)

J

16
;

@2v
@�2

:Hi+4(�)= (1 + �i�)3(1− �i�)2
J2

16

; i = 1; 2 for quintic element

Here �1 = −1, �2 = 1 and J=�ye=2 is the Jacobian, where �ye is the element size.

2.2. Finite element formulation

Following the Bubnov–Galerkin procedure, after assembling to a global system, the elementary
integral form of the Orr–Sommerfeld equation (5), was obtained as follows:

[A]{v}= �[B]{v} (7)

where [A] and [B] are square matrices of dimension M ×M . The parameter M represents
the total degrees of freedom within the discretized domain M = l× (N + 1), where N is the
number of the �nite elements used in y-direction and l is related to the precision of the
Hermite element (l=2 for cubic elements and 3 for quintic elements). The elementary
matrices are:

[A] =
∫
�ye

[
@2Hi

@y2
@2Hj

@y2
+ 2�2

@Hj

@y
@Hi

@y
+ �4HjHi
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+i�ReUb
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Hi + i�Re
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]
dy

[B] =−i�Re

∫
�ye

(
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@y
@Hi

@y
+ �2HjHj

)
dy (8)

To avoid numerical integration errors, the above integrals are accurately computed using eight
points of Gauss.

2.3. Boundary conditions

The boundary conditions in Equation (4) are introduced without altering the dimensions of
the matrices [A] and [B]. From Equation (4), one can deduce that:

v1 =
@v1
@y
=0

vN+1 =
@vN+1
@y

=0
(9)

where 1 refers to the �rst node of the �rst element and N + 1 refers to the last node of
the last element N . For the unknown variable vj at the �rst node of the �rst element (i.e. at
y= − 1), the boundary conditions are introduced in Equation (7) as follows:

[A]1; j=[A]i;1 = [B]1;j=0 for all i and j

[A]1;1 =�; [B]1;1 =− i�
(10)

where � is a real number which could be set to any positive value, such that the spurious
eigenvalues are given by � = 0 − i�. It is recommended to consider large value of � (i.e.
�=106) such that the spurious eigenvalues correspond to the most stable modes. Similar
technique is applied for the other boundary conditions (i.e. at y=1).

2.4. Threshold for oscillatory �ows

The transition from steady to oscillatory laminar �ows indicates the early stage of transition to
turbulence. A linear stability analysis determines the threshold, ReC , above which instabilities
develop. Above the threshold, the perturbations may grow with time in a monotonic or an
oscillatory manner. The perturbation growth rate is related to � (�= �r + i�i). For a given
wave number �, the eigenvalue � and eigenfunctions {v} are computed for di�erent Reynolds
numbers and wave numbers. The solution of the eigenvalue problems leads to M eigenvalues
�i, with i = 1; 2; : : : ; M . The onset of instabilities is obtained by observing when the imaginary
part of � changes from negative to positive values in only one eigenvalue. If the real part of the
eigenvalue is not zero, then the instability is oscillatory. In this manner, the critical Reynolds
number can be obtained for di�erent wave numbers. The minimum Reynolds number for all
wave numbers represents the threshold of instabilities, and the corresponding wave number is
the critical one.
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(a) (b)

Figure 2. (a) Uniform grid, (b) non-uniform grid: sinusoidal distribution.
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Figure 3. Stability diagram for plane Poiseuille �ow obtained with 60 quintic hermite elements.

3. RESULTS AND DISCUSSION

All of the results presented in the present paper were obtained using double precision variables.
Due to the boundary conditions constraints, the high gradient velocities were con�ned to
a small layer near the horizontal planes. Two meshes were considered to study the grid
sensitivity. The �rst mesh was uniform. The second mesh used a sinusoidal distribution such
that the grid was more re�ned near the boundaries (see Figure 2(a) and (b)). The sinusoidal
grid distribution is given in terms of the �nite element size de�ned as follows:

�Yej=
∣∣∣∣sin

(
�
2
+
(j − 1)�

N

)
− sin

(
�
2
+

j�
N

)∣∣∣∣ ; j = 1; N (11)

The eigenvalue problem described by Equation (7) was solved using the double precision
subroutine DGVCCG from the IMSL library.
Figure 3 shows the stability diagram for the Re–� plane. The outer curve gives the bound-

ary for the onset of the neutral instability; this corresponds to �i=0. All of the contours
correspond to constant �i. For any Reynolds number, a vertical curve indicates the maximum
growth rate of the perturbations and the corresponding wave number.
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Figure 4. Grid size e�ect on the computed growth rate and pulsation of the perturbation for
Re=104 and �=1 using quintic hermite elements. ��e represents the di�erence between the

present computed values and Orszag’s results.

Table III. Grid size e�ect on the computed critical Reynolds and wave numbers at the onset of oscillatory
�ows using quintic hermite element with uniform and sinusoidal meshes.

N �c ��c Rec �Rec �r � i |��r |
Uniform mesh
10 1.0276203 7:060E− 03 5469.1997 3:03E + 02 0.26486483 8:3E− 15 8:63E− 03
20 1.0198174 7:426E− 04 5782.8900 1:07E + 01 0.26378104 2:4E− 14 2:21E− 03
30 1.0205113 4:875E− 05 5772.8572 6:37E− 1 0.26398959 3:7E− 14 1:22E− 04
40 1.0205461 1:389E− 05 5772.2364 1:64E− 02 0.26399991 6:7E− 13 1:83E− 05
50 1.0205502 9:805E− 06 5772.2196 3:60E− 04 0.26400059 3:3E− 13 1:15E− 05
Sinusoidal mesh
10 1.0179694 2:591E− 03 5831.9731 5:98E + 01 0.26315593 8:72E− 15 8:46E− 04
20 1.0205948 3:479E− 05 5770.7306 1:49E + 00 0.26401834 4:80E− 14 1:66E− 05
30 1.0205477 1:227E− 05 5772.2066 1:34E− 02 0.26400036 1:91E− 13 1:38E− 06
40 1.0205429 1:715E− 05 5772.2218 1:78E− 03 0.26399972 2:92E− 12 2:02E− 06
50 1.0205315 2:851E− 05 5772.2216 1:59E− 03 0.26399840 2:74E− 12 3:34E− 06

The results obtained for �=1 and Re=104 were compared to Orszag’s results [1]. Figure 4
illustrates the e�ect of the grid size on the computed values. As can be seen from Figure 4(b),
the present results converge to those reported by Orszag [1] within a di�erence of about
10−9. Table III lists the grid size e�ects on the computed critical parameters at the onset
of instabilities. These results are compared to those of Orszag [1], which are denoted in
Equation (12) by the subscript a (i.e. accurate):

��C = |�C − �Ca|
�ReC = |ReC − RCa|
��r = Real(�− �a)

��i = Imag(�− �a)

(12)
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Figure 5. Convergence rate for the most stable mode with �=1 and Re=104, using uniform grid.

where �Ca = 1:02056, RCa = 5777:22, and �a = 0:26400174 + i0 for the onset of instabilities.
For Re=10000 and �=1, �a = 0:23752649 + i0:00373967 [1].
The error estimation for the perturbation �ow �eld (v) is given by the following usual

expression:

|v− v�ye |n6C�yk+1−n
e (13)

where C is a positive constant, the parameter k is related to the polynomial order of the shape
functions and n to the Sobolev space (Hn

0 (�) with n=2 for the present problem). Therefore,
the convergence rate (k + 1− n) is of order two for cubic Hermite element (k=3) and four
for quintic element (k=5).
A convergence analysis for the computed eigenvalues is presented for the most unstable

mode with �=1 and Re=104. Using cubic and quintic elements, the error is given by

Error = |Real(�− �a)|=C�yr
e (14)

is displayed in Figure 5 as a function of the �nite element size; �ye, using uniform grid
distribution. The computed values are presented in the �gure by symbols. A power �tting
curve (Error =C�yr

e, shown in the �gure with straight lines) is performed for each case and
the estimated error expression is obtained as follows:

Error = 34:2�y3:7e for cubic element

Error = 1:8× 107�y10:8e for quintic element (15)

At the �rst glance, the quintic high precision Hermite element displays a very high conver-
gence rate, but its constant is very large. Nevertheless, the error dives to zero more rapidly
than the cubic Hermite element case. Thus, a best accuracy could be obtained with only a
few quintic elements.
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Table IV. Uniform grid size e�ects on the computed value of � for Re=10 000 and �=1,
using a quintic hermite element.

N �r � i |��r | |�� i|
5 0.2773423866 0.03273227546 3:9816E− 02 2:8992E− 02
10 0.2321009532 0.00754796418 5:4255E− 03 3:8083E− 03
20 0.2373776055 0.00365547838 1:4888E− 04 8:4192E− 05
30 0.2375202777 0.00373278188 6:2123E− 06 6:8881E− 06
40 0.2375261993 0.00373936516 2:9068E− 07 3:0484E− 07
50 0.2375264745 0.00373966788 1:5520E− 08 2:1212E− 09
60 0.2375264909 0.00373967637 9:4714E− 10 6:3866E− 09
70 0.2375264905 0.00373967320 5:2108E− 10 3:2006E− 09
80 0.2375264897 0.00373967164 3:3878E− 10 1:6449E− 09
90 0.2375264892 0.00373967104 8:0072E− 10 1:0434E− 09
100 0.2375264890 0.00373967081 9:7820E− 10 8:1093E− 10
120 0.2375264889 0.00373967067 1:1241E− 09 6:7173E− 10
140 0.2375264888 0.00373967062 1:1885E− 09 6:2317E− 10
160 0.2375264887 0.00373967067 1:3010E− 09 6:6817E− 10
180 0.2375264888 0.00373967058 1:1550E− 09 5:8455E− 10
200 0.2375264887 0.00373967061 1:2565E− 09 6:1064E− 10
Orszag [8] 0.23752649 0.00373967 — —
Kirchner [5] 0.23752648882047 0.003739670622979582 — —

Table V. Non-uniform grid size e�ects on the computed value of � for Re=10 000 and �=1,
using a quintic hermite element.

N �r � i |��r | |�� i|
5 0.2313468705 0.00589349592 6:1796E− 03 2:1538E− 03
10 0.2372547840 0.00397284684 2:7171E− 04 2:3318E− 04
20 0.2375277348 0.00373666575 1:2448E− 06 3:0043E− 06
30 0.2375265808 0.00373955990 9:0796E− 08 1:1010E− 07
40 0.2375264877 0.00373967121 2:2588E− 09 1:2082E− 09
50 0.2375264874 0.00373967223 2:6315E− 09 2:2338E− 09
60 0.2375264886 0.00373967084 1:3938E− 09 8:4357E− 10
70 0.2375264571 0.00373970564 3:2946E− 08 3:5638E− 08
80 0.2375264930 0.00373967037 3:0296E− 09 3:7256E− 10
100 0.2375264694 0.00373965259 2:0580E− 08 1:7410E− 08
120 0.2375264386 0.00373960991 5:1389E− 08 6:0090E− 08
140 0.2375266268 0.00374005593 1:3683E− 07 3:8593E− 07
160 0.2375264269 0.00373982898 6:3098E− 08 1:5898E− 07
180 0.2375268635 0.00373768946 3:7353E− 07 1:9805E− 06
200 0.2375261430 0.00373667921 3:4697E− 07 2:9908E− 07

The results, for di�erent grid sizes, are given in Tables III for the onset of instabilities
and in Tables IV and V for �=1 and Re=104. The computed results converge towards the
accurate values, reported by Orszag [1], as the number of elements is progressively increased.
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ψ

ω

Figure 6. Perturbation �ow and vorticity patterns at the onset of oscillatory �ows.

The results also indicate that the accuracy of the non-uniform grid is much better than that
of the uniform grid, for the same number of elements. With the non-uniform grid, the ac-
curacy is excellent with 40 �nite elements. It is noticed that when the number of element
increases beyond 40, the solution became less accurate. This is due to the fact that when
the number of element is increased the size of the �rst element near the walls became very
small. Therefore, the �nite element integration over these elements leads to very small
values when compared to the other elements values (i.e. for N =200, the maximum and the
minimum values of the matrix [A] are obtained as (9130209049753:91+ i24283:5166742748)
and (1:762393122114774× 10−6 + i9:191382668079178× 10−16), respectively. Hence, to cap-
ture well the accuracy, the numerical code has to be switched from double to high precision
variables.
To illustrate the secondary �ows generated by the growing perturbation, a stream function

� is de�ned as follows:

W = − @�
@x

and U =
@�
@y

(16)

such that the continuity equation is automatically satis�ed. The perturbation for the stream
function  is

 =
−i
�
ei�(x−�t)v (17)

and the vorticity �eld is

!= −∇2 =
−i
�
ei�(x−�t)

(
−�2v+

d2v
dy2

)
(18)

The perturbation stream function and vorticity contours at the onset of instabilities are
illustrated in Figure 6. The perturbation vorticity gradient is enhanced near the top and bottom
boundaries.
The vertical velocity of the perturbation and its derivatives are shown in Figure 7. It is clear

that the derivative functions exhibit steep gradients near the boundaries. Thus it is important
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Figure 7. Vertical velocity of the perturbation and its derivatives.

to use a non-uniform grid to capture the �ow details using as few �nite elements as possible.
Finally, the e�ect of �nite element order is studied. The results listed in Table VI for Re=104

and �=1 show that increasing the order of the Hermite element considerably increases the
accuracy of the results. When using 60 quintic elements, with non-uniform mesh, the results
agreed to nine digits with the accurate results reported by Kirchner [8]. Further increases in
the element number gave less precision, as the �rst element size near the wall became very
small.
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Table VI. Comparison between cubic and quintic hermite element results for non-uniform
grid with Re=10 000 and �=1.

N �r � i

(a) Cubic element
10 0.2406497285 0.0075862465
20 0.2381202250 0.0042009069
30 0.2375665423 0.0038182006
40 0.2375310856 0.0037651408
50 0.2375281310 0.0037501097
60 0.2375272276 0.0037447320
70 0.2375268699 0.0037424113
80 0.2375267058 0.0037412803
90 0.2375266211 0.0037406770
100 0.2375265740 0.0037403318
200 0.2375264951 0.0037397010
[5] 0.2375264888 0.0037396706

(b) Quintic element
10 0.2372547840 0.0039728468
20 0.2375277348 0.0037366657
30 0.2375265808 0.0037395599
40 0.2375264877 0.0037396712
50 0.2375264874 0.0037396722
60 0.2375264886 0.0037396708
70 0.2375264571 0.0037397056
80 0.2375264930 0.0037396704
90 0.2375264862 0.0037396538
100 0.2375264694 0.0037396526
200 0.2375261430 0.0037366792
[5] 0.2375264888 0.0037396706

4. CONCLUSION

A numerical linear stability analysis of developed laminar �ows was used to determine the
critical Reynolds number above which a steady laminar �ow becomes unstable to in�nitesimal
perturbations. A �nite element method was proposed to solve the Orr–Sommerfeld equation,
using high precision Hermite �nite elements. The results were presented for cubic and quintic
Hermite elements and with uniform and non-uniform grid distributions. The results showed an
excellent agreement with the most accurate results available in the literature. A best accuracy
is obtained with few elements (40 elements) using a non-uniform grid (sinusoidal distribution)
and a quintic high precision Hermite element. For uniform grid distribution, it was found that
the convergence rate of the error using the cubic Hermite element is about four, however,
it is about 11 for the quintic element. The convergence analysis demonstrated that a high
precision �nite element method is able to solve the stability problem accurately within only a
few elements. The present numerical technique can be easily extended to other classical �ow
con�gurations, or to complex laminar �ow con�gurations.
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